LLM Researcher | ByteDance Seed LLM | djhbarca[at]163.com
🌱💼: We are currently recruiting interns for LLM research at Seed. If you are interested in contributing to this field, please reach out to me directly.
Currently, I am an algorithm researcher in ByteDance Seed LLM team, and my main job responsibilities involve training algorithms and data mining.
Education
- Master of Computer Science @ Nanjing University (2019–2022)
- Bachelor of Computer Science @ Nanjing University (2015–2019)
Research Interests
My work centers on constructing pretraining data and learning methods for LLMs with demonstrable theoretical foundations. My key research contributions for Seed LLMs include:
- High-quality pre-training data mining & curation
- Training optimization algorithms and scalable training methodologies
- Data distribution shift mitigation
- Training SLMs and it can match DeepSeek-R1 performance with 2% parameters
- The first proposal of scaling law of SFT stage
- Theoretical foundations of ultra-large-scale model training
- Understanding paradigm and generalization of LLM/VLM
Latest Activity
- 🆕 Latest Blog: Seed LLM&VLM Team. Seed-1.6
- 🆕 Latest Paper: Haoran Zong, Xiao Zhang, Ruichen Li, Jian-Hui Duan, Derun Zou, Wenzhong Li. Convergence Guaranteed Federated Learning through Gradient Trajectory Smoothing with Triple-Objective Decomposition., ACM Transactions on Knowledge Discovery from Data, DOI: 10.1145/3743142, Jun 2025.
- Seed LLM&VLM Team. Seed-1.6
- Seed VLM&LLM Team. Seed1.5-VL Technical Report. arXiv:2505.07062. May. 2025.
- Seed LLM Team. Seed-Thinking-v1.5: Advancing Superb Reasoning Models with Reinforcement Learning. arXiv:2504.13914. Apr. 2025.
- Haoran Zong, Xiao Zhang, Ruichen Li, Jian-Hui Duan, Derun Zou, Wenzhong Li. Convergence Guaranteed Federated Learning through Gradient Trajectory Smoothing with Triple-Objective Decomposition., ACM Transactions on Knowledge Discovery from Data, DOI: 10.1145/3743142, Jun 2025.
- Jian-Hui Duan, Wenzhong Li, Derun Zou, Ruichen Li, Sanglu Lu, Federated Learning with Data-Agnostic Distribution Fusion, The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023), Vancouver, Canada, Jun 18-22, 2023.
- Jian-Hui Duan, Wenzhong Li, Sanglu Lu, FedDNA: Federated Learning with Decoupled Normalization-Layer Aggregation for Non-IID Data, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2021), Bilbao, Spain, Sep 13-17, 2021.
- Jian-Hui Duan, Wenzhong Li, Xiao Zhang, Sanglu Lu, Forecasting fine-grained city-scale cellular traffic with sparse crowdsourced measurements, Computer Networks, 39(2461-2475), Volume 214, pp 1-14, Sep 4 2022.
- Wangxiang Ding, Wenzhong Li, Zhijie Zhang, Chen Wan, Jian-Hui Duan, Sanglu Lu, Time-varying Gaussian Markov Random Fields Learning for Multivariate Time Series Clustering, IEEE Transactions on Knowledge and Data Engineering (TKDE), vol. 35, no. 11, Nov 2023.
- Derun Zou, Xusheng Liu, Lintan Sun, Jian-Hui Duan, Ruichen Li, Yeting Xu, Wenzhong Li, Sanglu Lu, FedMC: Federated Reinforcement Learning on the Edge with Meta-Critic Networks, IEEE International Performance, Computing, and Communications Conference (IPCCC’22), Austin, Texas, USA, November 11-13, 2022.
大模型算法研究员 | ByteDance Seed LLM | | djhbarca[at]163.com
目前为字节跳动大模型团队(Seed)的一名算法研究员,主要工作内容为训练算法与数据挖掘。
教育经历
- 工学硕士 (计算机科学与技术@南京大学 ) (2019–2022)
- 理学学士 (计算机科学与技术@南京大学 ) (2015–2019)
研究方向
我的主要研究方向为预训练数据构建和基于可证明基础理论的大语言模型训练方案研究。对Seed大语言模型的贡献主要为:
- 高质量预训练数据挖掘与精调
- 预训练优化与可扩展训练方式探索
- 数据分布漂移对深度学习的影响
- 训练小模型并以2%的参数量达到DeepSeek-R1的性能
- 首次提出SFT阶段的scaling law
- 机器学习基础理论与超大规模训练的结合
- 大语言模型/语言视觉模型的理解性范式与泛化性研究
最新活动
- 🆕 Latest Blog: Seed LLM&VLM Team. Seed-1.6
- 🆕 Latest Paper: Haoran Zong, Xiao Zhang, Ruichen Li, Jian-Hui Duan, Derun Zou, Wenzhong Li. Convergence Guaranteed Federated Learning through Gradient Trajectory Smoothing with Triple-Objective Decomposition., ACM Transactions on Knowledge Discovery from Data, DOI: 10.1145/3743142, Jun 2025.
- Seed LLM&VLM Team. Seed-1.6
- Seed VLM&LLM Team. Seed1.5-VL Technical Report. arXiv:2505.07062. May. 2025.
- Seed LLM Team. Seed-Thinking-v1.5: Advancing Superb Reasoning Models with Reinforcement Learning. arXiv:2504.13914. Apr. 2025.
- Haoran Zong, Xiao Zhang, Ruichen Li, Jian-Hui Duan, Derun Zou, Wenzhong Li. Convergence Guaranteed Federated Learning through Gradient Trajectory Smoothing with Triple-Objective Decomposition., ACM Transactions on Knowledge Discovery from Data, DOI: 10.1145/3743142, Jun 2025.
- Jian-Hui Duan, Wenzhong Li, Derun Zou, Ruichen Li, Sanglu Lu, Federated Learning with Data-Agnostic Distribution Fusion, The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023), Vancouver, Canada, Jun 18-22, 2023.
- Jian-Hui Duan, Wenzhong Li, Sanglu Lu, FedDNA: Federated Learning with Decoupled Normalization-Layer Aggregation for Non-IID Data, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2021), Bilbao, Spain, Sep 13-17, 2021.
- Jian-Hui Duan, Wenzhong Li, Xiao Zhang, Sanglu Lu, Forecasting fine-grained city-scale cellular traffic with sparse crowdsourced measurements, Computer Networks, 39(2461-2475), Volume 214, pp 1-14, Sep 4 2022.
- Wangxiang Ding, Wenzhong Li, Zhijie Zhang, Chen Wan, Jian-Hui Duan, Sanglu Lu, Time-varying Gaussian Markov Random Fields Learning for Multivariate Time Series Clustering, IEEE Transactions on Knowledge and Data Engineering (TKDE), vol. 35, no. 11, Nov 2023.
- Derun Zou, Xusheng Liu, Lintan Sun, Jian-Hui Duan, Ruichen Li, Yeting Xu, Wenzhong Li, Sanglu Lu, FedMC: Federated Reinforcement Learning on the Edge with Meta-Critic Networks, IEEE International Performance, Computing, and Communications Conference (IPCCC’22), Austin, Texas, USA, November 11-13, 2022.
联系方式